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On the fluctuations of the Casimir force 
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UK 

Received 4 Se~tember  1990 

AbsIrPe. Standard statistical and  quantum physics are used to analyse the fluctuations of 
the Casimir stress S (normal force per unit area) exerted on a flat perfect mirror (conductor) 
by the zero-point electromagnetic fields in adjacent space, panly in order to help dispel 
the apologetics that often befog zero-point effects generally. S is measurable only when 
averaged (3) over finite times T, and also (9) over finite areas of typical linear dimensions 
0. With only one mirror, the mean-square deviations are (P3'j=constantx fi'Ic'T', the 
value of such constants depending on how the apparatus averages over time; if a<< cT, 
then (AJ')=(As'). If, unrealistically, U >> cT, then (AS'j=constantx hiic'oi7*. On one 
of a pair of parallel mirrors a distance L apan, if CTB a, cT,> L, then (A$')=(AS2)= 
comtantx h'lc'L'7b. Mirror transparency at frequencies well above I /  T has negligible 
effect. An appendix outlines the mathematical problems. mostly unsolved, met in attempts 
to evaluale the full probability distributions underlying such mean-square deviations. 

1. Introduction and conclusions 

The Casimir force is the attraction ~ ' h c / 2 4 0 L "  per unit areat between two flat, parallel 
and indefinitely extended perfect mirrors (i.e. perfect conductors) a distance L apart. 
Numerically it reads 1.30x lo-'* (cm/L)4 dyne"*. It is the prime manifestation of 
the zero-point motions of quantized fields, and like the weather (Warner 1897) in that 
everyone talks but nobody does anything about it: see, for example, Plunien er al 
(1986) and Fulling (1989) for recent discussions, and Sparnaay (1958) for the only 
measurement on metals (rather than insulators). Even the questions raised in such 
discussions have remained quite remarkably restricted. Here we extend their scope by 
considering the fluctuations of the Casimir force when averaged not over the entire 
surface of a nominally infinite mirror, but only over a part having typical linear 
dimensions a, and area A oi order a?; and aiso, as in practicai measurements it must 
be, over some finite time interval T One of our aims is to de-mystify zero-point fields 
in general, by subjecting their manifestations to the kinds of analyses that are routine 
in quantum mechanics and in the kinetic theory of gases. The gas we have in mind is 
the photon gas, albeit at zero temperature, and although analogies with non-relativistic 
gases prove more fruitful in suggesting questions rather than answers. 

Envisage then a pision forming pari bui movabie independeniiy of the rest of a 
finitely thick but infinite-area perfect mirror normal to the z axis, and consider the 

t Henceforth we generally use natural units h = I = e ,  and unrationalized Gaussian units for the Maxwell 
field. It proves crucial that E and B then have dimensions I/(time)'= I/(length)'. 
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impulse delivered to the piston over an interval by the zero-point fieldst. The force 
they exert per unit area is given by the 33 component of the stress tensorf S,,= 
[E&+ B,B, -f80(EZ+B2)]/4rr; on the mirror, since the boundary conditions enforce 
Ell=O=B,,  we have 

(The subscript I/ identifies vector components parallel to the surface: e.g. rll I (x, y).) 
Positive S,, corresponds to a negative pressure, i.e. to a force directed into the vacuum. 

By hindsight we postpone the surface averaging, and start, still for given (x, y )  on 
say the right-facing mirror surface, with the time average 

S = I - a d l f ( f ) S 3 3 ( 0  (1.2a) 

( _ _ d t f ( t ) = l .  (1.26) 

(The subscripts 33 are dropped from s for brevity.) The averaging function f depends 
on the measuring apparatus. Its precise shape, though it does effect the final numerical 
coefficients, need not be chosen until later; meanwhile, on physical grounds we take 
f to be real and non-negative, and more specifically as a single peak of width 2T  
comparable to the experimental resolving time. 

m - 

m 

Later we shall introduce the joint time and surface average 

s- d2rll 4(rll)S (1.30) I 
with 4 likewise real and non-negative, and taken as a single peak extending over a 
region of linear dimensions a comparable to those of the piston. However, in most 
practical cases the shape of 4, unlike the shape off ;  proves irrelevant. 

Note that these time and surface averages identified by overbar and tilde respectively 
are still operators in Hilbert space (i.e. in the photon Fock space); indeed they are 
precisely the random variables under study, whose quantal expectation values, vacuum 
(ground-state) expectation values in our case, will be denoted by angular brackets, 
(. . .). Thus, the mean Casimir force is related to (S) = ( S )  = (s), and its measurable 
fluctuations, via (p), to the mean-square deviation 

(AS’) I ( S 2 ) - ( S ) 2 .  (1.4) 

The layout of the rest of this paper, and its main conclusions, are as follows. Section 
2 exorcises some common preconceptions which experience suggests could otherwise 

t Here we consider only pistons with surface area appreciably less than that of the mirror. It remains to be 
investigated whether any special simplicities emerge when the piston comprises the entire mirror, i.e. an 
entire end wall of the system, which in realizable systems must be finite. Meanwhile, the idealization to 
infinitely extended mirrors greatly eases the calculations. 
$The first to discuss the Casimir effect i n  term5 of the stress tensor were Brawn and Maclay (1969). Most 
others discuss it in terms of zero-paint energies; this approach however doer not readily lend itself to 
elucidating fluctuations. 
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much retard one’s understanding of the physics. Section 3 introduces the quantized 
fields in the simplest Casimir-related situation, with only one mirror; it also outlines 
the two alternative and physically quite different roles that can be assigned to a 
frequency cut-off in such calculations. 

Section 4 considers the force per unit area on a test piston set in  a single mirror, 
whose mean value naturally vanishes by symmetry. In the realistic case where a << cT, 
it turns out that surface averaging makes no further difference to the finite-time-averaged 
fluctuations, and one finds 

constant 
( A S ’ ) = ( A S ) = -  ( a  << cT) 

T8 
the main results being given by (4.14) and (4.10a, b). In the opposite and rather 
academic extreme where a >> cT, one finds 

as given by (4.17). 
Section 5 considers a similar test piston set into one of a pair of parallel mirrors, 

where the force per unit area has the non-zero mean value quoted at the start of this 
introduction, and rederived in (5.1) and (5.2). When, realistically, cT>> L and cT>>a, 
one finds 

constant ( A ~ ~ ) = ( A P ) = -  
L’ T~ 

as given by (5.4).  The relative RMS fluctuations are then of order (L/cT)’<< I .  
Finally, the appendix describes some problems one meets if, going beyond the 

mean-square deviations, one tries to determine the probability distributions in full. 
Mathematically this is manageable for the Cartesian components of the fields E and 
B themselves, whose distributions are Gaussians; but the results make physical sense 
only for finite-time-averaged fields, whose distributions have widths proportional to 
T-’. The literature does supply formal expressions for the characteristic functions of 
the stress tensor or of the energy density, but these are likely to be quite awkward to 
evaluate, and for the finite-time-averaged quantities very difficult indeed. 

2. Exorcism 

It may obviate some confusing reflexes if we recall here two points from the ordinary 
Maxwell-Boltzmann kinetic theory of ideal gases. 

First, there is at best only a very tenuous connection between, on the one hand, 
the ‘pressure fluctuations’ prescribed for a test volume V by the textbook formula 
Ap’ = ( 2 k Q 2 / 3  V)(Jp/J@) (e.g. see Reif 1965), and, on the other hand, the mean-square 
deviation of the finite-time-averaged force, call it E experienced by a piston of finite 
area A (Fowler 1936). The former, like the mean pressure itself, are bulk equilibrium 
properties governed by the equation of state; they are loosely analogous to the 
unaveraged fluctuations discussed in the appendix, and have similarly and surprisingly 
little relevance to measured forces. By contrast, the latter depend not merely on the 
(Poisson) time distribution of the molecular impacts, but also on the interaction 
mechanism between molecule and piston surface. For instance, if a fraction ( I  -a) of 
incident molecules are reflected specularly, while the rest stick and are eventually 
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re-emitted in a statistically independent process, then A F 2 ( a )  = (1 - a / 2 ) A F 2 ( 0 ) .  It is 
of course E / A  that is loosely analogous to the measurable quantity studied in 
sections 4 and 5 .  Thus it seems unlikely that the perfect-mirror fluctuation formulae 
derived there can be extended rigorously to imperfect materials in terms simply of 
their bulk electromagnetic response functionst, in the way that the mean stresses can 
be (Dzyaloshinskii et a/ 1961, Lifshitz and Pitaevskii 1980). 

Second, we recall that for the ideal Maxwell-Boltzmann gas the mean-square 
deviation A(F/A)2 is proportional to l/AT, simply by the law of large numbers, i.e. 
simply because the molecular impacts are statistically independent. By contrast, for a 
quantum gas, even for an ideal one, and for the photon gas in particular, the impacts 
are highly correlated; consequently we shall obtain the quite different dependences on 
a and T already anticipated in the introduction. In other words, though a simple 
photon-gas model of the Casimir effect, like that suggested by Milonni er nl (1988), 
is suited to interpreting the mean Casimir force, it affords no immediate insight into 
its fluctuations. 

3. Quantization in a half-space, and the role of cut-offs 

For later reference we start with the quantized field operators in unbounded space: 
m 

d'K J;;u,(K)E,(K)e'K"-'"' + HC (3.1) 

and similarly for B with E -f I? A E ;  here, HC stands for Hermitean conjugate, o = IKI, 
E,. K = 0, E,(K) EJK) = a,,., and the creation and annihilation operators ai, a obey 
the usual commutation rules. Hats denote unit vectors. 

For a single mirror with its right-hand surface at z = 0, the fields in the half-space 
z 3 0 may be written (e.g. see Barton and Fawcett 1988) 

I1 e""II-'"'+Hc 
w 

1 
B=-  d l  d ' k k  [ a,[-iik sin(/z)+Ll cos(lz)] 

TI 

+a,(-iLn i ) w  cos(Iz) eik.rli-i~r+Hc, 1 
Here ~ = ( k ' + / ~ ) ' ' ~ ,  and 

( 3 . 2 ~ )  

(3 .2b)  

[ ~ , ( k ,  I), a:(k', r')] = G , , , S ( / - r ' ) S ' " ( k - k ' )  ( 3 . 2 ~ )  
while a or at  pairs commute, Integrations over I and k = ( k , ,  k2 )  will always be 
understood to run between the limits shown in ( 3 . 2 ) .  Note the option of changing 
variables from ( I ,  k )  to the spherical-polar components ( K ,  e , $ )  of K, with 0 8 S ~ / 2 ,  
so that / =  K cos 8, k = K sin 8 and j d l  d2k. .  . =I: dK K 2 j i "  dc$ d cos 8 . .  . . We 

t For example, it i s  a challenge to extend the theory of the Casimir effect to black surfaces, defined as 
absorbing all the radiation that falls on them. As regards particles, a surface black in this sense is readily 
characterized by an accommodation coefficient a = I .  But no convincing and practically useful way is known 
of representing blackness by boundary conditions imposable on the  solution^ of partial differential wave 
equations: this has been discussed in classi~al diffraction theory (Kottler 1965, 1967). 
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shall often subsume all the normal-mode labels into A, write the normal-mode ampli- 
tudes as EA ( r ,  1 )  and BA ( r ,  t ) ,  and set E = LA a,E, + HC, B = L, a,B, + HC. Thus, with 
a single mirror, X A . .  . stands for I $=,, i d /  d2k. . . . The vacuum is written IO), with 
(01.. .IO)=(. . .), and one- and two-photon states as / A )  and IAA'). 

On the mirror surface the surviving fields featured in S,, reduce to 

(3.3b) 

Under HA, with summands quadratic in the normal-mode amplitudes, we introduce, 
whenever it is mathematically convenient, a frequency cut-off chosen somewhat 
arbitrarily as  exp(-o/n) .  We shall just as freely drop such factors when they are no 
ionger needed. Tne cut-oii can be caiied upon io piay two physicaiiy quite diiiereni 
roles, and it is essential to distinguish between them very clearly (e.g. see Barton and 
Fawcett 1988, appendix F). 

First, i n  unbounded space, and also regarding mirror-related effects as long as the 
idealization to perfect mirrors remains unquestioned, the cut-off serves as a purely 
auxiliary mathematical device, and physical significance attaches only to quantities 
well behaved in the 'no-cut-off limit' Cl + m. (The import of these remarks may become 
clearer in the appendix.) 

Alternatively, in mirror-related effects calculated via (3.3), one can try to interpret 
such sums with finite cut-off as very rough and provisional order-of-magnitude estimates 
for imperfect mirrors. To this end one might equate fl to the plasma frequency wp of 
metallic mirrors, because at frequencies well above wp such materials become effectively 

way or another contributions from opposite sides of the mirror tend to cancel. The 
present paper is almost wholly confined to perfect mirrors, with only a few asides on 
this second interpretation of the cut-off: we hope to discuss more realistic models for 
mirrors more sensibly elsewhere. Meanwhile, in order-of-magnitude estimates we shall 
set ll= q,= 1 . 6 5 ~  10l6 s-', the plasma frequency of copper. 

1 
BII(z=O)=- d/d2k-[o,&a2(ik^ni)w]e'*''lT'"'+Hc. 

rr ' I  & 

transparent; this in ?!!m recders the bollndjlry conditions inoperjltive, whefice in %!e 

4. Fluctuations with a single mirror 

It is easy to see that on the mirror equations (3.3) with a cut-off entail 

1 
( B i )  = 1 ~ ( A ~ B l l / O ) ~ 2  =$ / dl  d2k- ( r 2 +  w2) e-""* 

W 

whence 
1 

(S) = (&) = 5 / d l  1 d'k- [ k 2 -  ( I 2 +  w')] e-"'" 
W 

(4.10) 

(4.lb) 

(4.2a) 

(4.26) 
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The minus sign specifies a positive pressure. That (E') ,  (B') and(S) must be proportional 
to f14 follows on dimensional grounds alone. The provisional estimate fI = wp for 
imperfect mirrors (see section 3 )  yields (S)  2.9 x 10' dyne cm-2 = 29 atm, far in excess 
not only of the net Casimir force per unit area between parallel mirrors at achievable 
separations, but also of the ordinary radiation pressure at finite laboratory temperatures, 
which is only ~ r ~ ( k @ ) ~ / 4 5  = 2 x 10-'(@/300)4 dyne cm-2. 

Since (S)  is independent of t and r, averaging makes no difference, as already 
anticipated just above (1 .4) .  But its contribution to the vacuum expectation-value of 
the force on our test piston is cancelled identically by an equal and opposite contribution 
from the opposite face of the piston, so that, for a single mirror, the total mean force 
vanishes. By symmetry, the same is true for imperfect mirrors. 

By contrast, no such cancellation occurs in the mean-square values of S or of its 
various averages. On the contrary, the right-hand and the left-hand half-spaces separ- 
ated by our perfect mirror constitute completely disjoint electromagnetic systems; the 
fields in these half-spaces fluctuate independently of each other; and the mean-square 
values of the stresses and forces on the two sides simply add. Right from the outset 
therefore when treating fluctuations we are deprived of the mechanism which eliminates 
divergences from the traditional calculations of the mean Casimir force iise& as at the 
start of section 5 below. (For imperfect mirrors, fluctuations in. the two half-spaces 
will be effectively correlated above but not below the plasma frequency.) 

Nevertheless it proves convenient to begin by writing down the mean-square 
deviation of the unaveraged stress S,, itself, even though in the present context it is 
a purely auxiliary quantity. One finds straightforwardly, first the requisite two-photon 
matrix elements from ( 1 . 1 )  and ( 3 . 3 ) ,  namely 

1 /I' 
( I k l ,  /'k'llS,,IO)= -7 ~ ( k ^ .  2) exp[. . .] 

4 v -  m 
i lw' 

( I k l ,  l'k'21S3310)=--- ( k ^ .  k^'n $1 exp[. . . I  
4113 m 

1 1  
( lk2,  l'k'21S3,10)=-- [ - k k ' + w o ' ( k ^ n i ) . ( k ^ ' h i ) ] e x p [  ... 1 

472 m 
where the exponent is [ - i (k+k') .  r , , + i ( w + w ' ) t ] ;  and thence 

(As') E (SL-(S,J' ( 4 . 3 a )  

( 4 . 3 6 )  

x { 121"(k^.  k^')2+ l 'wf2(k^. 2 A i ) 2 + [ - k k ' +  ww'(k^ A i) ' (2 A i)]'} ( 4 . 3 c )  

L1 

211 
-_ - ( 4 . 3 e )  

Equation ( 4 . 3 6 )  stems from the selection rules for photon numbers; in ( 4 . 3 ~ )  we have 
inserted cut-offs as explained in section 3 ;  and in ( 4 . 3 d )  we have changed variables, 
and performed the integrations over the polar angles of K and K ' .  
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For what it is worth (granted finite CL), (4.3e) and (4.26) yield (AS*)1/2/l(S)l = 3 ,  

Consider next the time-average S defined in (1.2), and introduce the Fourier 
so that the unaveraged stress fluctuates very strongly. 

transform g ( u )  off ( t ) :  
m 

g( U) I-, d t f (  t )  e'"'. (4.4) 

It follows immediately that 

(AS) = ( $ 2 )  - (S)' (4.5a) 

(4.5d) 

(4%) follows after changing variables from K, K'  to 6 s  ( K  + K ' )  and TJ 3 ( K  - K ' ) .  
The factor lgI2 evidently mimicks a cut-off, and we shall see presently that with realistic 
1; g the cut-off can now be droppedt; (AS') is then proportional to the seventh moment 
of the spectral intensity lgI2 of the time-averaging function f: 

Mathematically simple candidates for f include the square step 

1 
f ( t ~ = ~  e(T- l t l )  (4.6a) 

the Gaussian 

the Lorentzian 

(4.66) 

(4.7a) 

(4.76) 

(4.8a) 

(4.86) 

t I t  makes no difference if the cut-off is retained in such cases because Ig(#)l', if i t  falls fast enough to 
ensure convergence, falls much fasterthan does exp(-Clil). For example. ifwe do keepthe factorexp(-#/n) 
in (4.5d) alongside the Lorentzian lg12=erp(-25T), the only effect an (4.10) is IO replace T there by 
(T+t/ZR). But even the least imaginable resolving time T for measuring forces will vastly exceed our 
estimate 3 x  1 0 - I ' ~  for 1 / 2 w , .  
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and modified Lorentzians 

(4.9) 

which approximate the square step when n is large. 
The limit T+O clearly reduces all thesefs to delta functions, and yields the results 

that one would have got without time averaging in the first place. 
Because of the singularities of the square step (4.6a) at I = i- its Fourier transform 

(4.66) drops too slowly at infinity to allow (AS2) as given by (4.5d) to dispense with 
the cut-off, and one finds 

cos 60 
=- 7 (’ - (1 + 4n2 ~ 2 ) 3 )  

1 n6 
87r4 T 

t a n 0 = 2 T n  (square step). 

But for all our other candidates (AS2) is well defined in the no-cut-off limit, and takes 
the form 

(4.10a) 

as could have been foreseen on dimensional grounds. The ‘constants’ here and below 
are all pure numbers, but different numbers in different equations. 

In equation (4.10~1) there is no getting away from the fact that the coefficient 
depends on the shape of 1; and no universal numerics can be expected. From here on 
we adopt the Lorentzian (4.8) in spite of the manifest artificiality which it shares with 
the other candidatest, because it makes the calculations very easy, partly through 
allowing g ( w  + 0‘ )  = e-WT e-y’T to factorize. Accordingly, we evaluate (4 .5d)  with 
g given by (4.86) but without the cut-off (see footnote on p. 7), i.e. replacing 
exp(-c/R)+ 1. This yields 

21 (AS>) = - (Lorentzian). 
2 9 T r 4 ~ x  

(4.10b) 

It is now straightforward to take the final step of averaging over rI as well as over 
I, as prescribed by (1.3). To this end one needs the two-dimensional Fourier transform 
y ( k )  of d4rll): 

(4.11) 

Analogously to (4.5) it follows at once that the physical quantity central to our 
discussion, namely (AS2) as defined by (1.4). is given by 

(AS2) = Z I(Ah’lS,310)12/g(w+~’)121y(k+k’)~2. (4.12) 
A A ’  

t An obvious next step towards greater realism might be to explore the modified Lorentzians (4.9) with 
large n. 
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The implications are clearest from the form that emerges by comparison with (4.3c), 
after introducing dimensionless vector variables XT= K, K = K j 7, etc. Eventually one 
finds 

1 1  
(AS2) = F  3 J d ' ~  K e-2x d3K' K '  e-**' 

x {cos2 B cos2 8' cos2( 4 - 4 ' )  + cos2 e sin2( 6 - 4 ' )  

+[-sin  sin O'+COS($-@')]~} 

x )I d2rlr 4(q)  e x p l - i ( K + 4 1  . q / c T J /  
2 

(4.13) 

where ( 0 , 4 )  and (0', +'I are the polar angles of K and K' respectively. 
The final factor IyJ' of the integrand in (4.13) depends on the shape of the 

surface-averaging function 4, and without restricting 6 no significant simplifications 
can be expected. But (4.13) does simplify crucially in most practically interesting cases 
because the region where 4 is appreciable will then be characterized by a maximum 
typicai h e a r  dimension a far shorter than the distance c i  that iight travels in the 
observation period T. Since the exponential exp[ -2(~  + K ' ) ]  effectively limits K and 
K' to order unity, the exponent [ - ~ ( K + K ' ) ~ ~ .  rlr/cT] can then be well approximated 
by zero. If so, then the final factor in (4.13) reduces to unity by virtue of the norming 
condition (1.3b) on 4; in other words, once we have averaged over times of order T, 
further surface averaging over regions with linear dimensions a << cT makes no difference. 
The conclusion is by no means peculiar to specifically Lorentzjan time averaging: the 
basic physical reason is simply that the time average is dominated by normal modes 
with frequencies below 1/ T, whose wavelengths in turn are greater than cT, and whose 
effects therefore are fully coherent over sampling distances much less than this. 

Accordingly, the most important result of the present section, lo be viewed jointly 
with (4.10), reads 

constant 
T" (AS') = (49') = (4.14) 

Corrections are of relative order ( a /  TI2; but we repeat that the value of the constant 
depends on the shape of the time-averaging function. 

The expressions (4.12), (4.13) simplify also in the opposite extreme a z c7, provided 
6 has a reasonably flat central region. (Here a is the minimum typical linear dimension 
characterizing 6.) We settle for the sketch of a rough plausibility argument couched 
explicitly in terms of Lorentzian time averaging. It proves convenient to revert to the 
integration variables (/, k), etc., i.e. to start from 

LA_- &Lm a F  +ha h-qooc --a th.s LO-P 11- :.. ( A  1 1 \  Cinrs T<< n h . r  acasn*-+ie- 
W I I F I F  L U G  b " l l l T 1 I L J  U 1  L I 1 C  U L Y U I O  (11.. L.l* aY..lr -1 .U , - . .LJ,.  U,.. ..U 1 .. Y ", Y1'".L,pL."", 

the exponentials e-2uT and e-2u'T decrease slowly on the scale of the oscillations of 
exp[-i(k+ k') . q], whence the last factor in the integrand is approximated first. With 
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I J  

In 

4 slowly varying on the relevant scale, we have1 
2 I [ d‘ril4 e x d .  . .I1 

J J 

1 
=-(2~r)‘S‘~’(k+k’) I d2rll 4 exp[-i(k+k’). rll] 

=-(2~r)’S‘’’(k+k‘) I d2rll 4 

= - ( 2 ~ r ) ’ S ‘ ~ ’ ( k +  k ’ ) .  

a2 

U 2  

U’ 

1 

1 

(4.166) 

(4 .16~)  

(4.16d) 

ling from (4 .16~)  to (4.166) we have estimated +(O)= / a z  on dimensional 
grounds; the exponent in (4.166) vanishes by virtue of the prefacing delta function; 
and the resulting integral in (4 .16~)  then reduces to unity by virtue ofthe normalization 
of 4. On substituting (4.16d) into (4.15), we obtain an explicit factor l / a2 ,  while the 
other factor depends only on T ;  hence dimensionai constraints alone yield the end result 

constant 
a2T6 

(AS’) = (4.17) 

to be compared with (4.14). By the light of the remark just below (4.9), it is clear that 
surface averaging without time averaging, which corresponds to finite a but T + O ,  is 
insufficient to ensure convergent, i.e. cut-off-independent, fluctuations. 

Note finally that the mean-square- time- and surface-averaged force per unit area 
on our test piston is given by twice (AS2), because the two sides of the piston contribute 
equally. 

5. Fluctuations with parallel mirrors 

Given two infinitely extended parallel mirrors with separation L, a test piston with 
typical linear dimensions a, and an averaging time T, one is in principle faced by 
several different regimes depending on the relative magnitudes of cT, L and a. But for 
simplicity we shall consider only the realistic case cT >> a;  then, as for a single mirror, 
surface averaging is redundant, and we need determine only the time-averaged fluctu- 
ation (AS’). 

If L>>cT, we must of course recover the results of section 4. However, this 
mathematical limiting case is somewhat deceptive, as shown by the scenario widely 
favoured by theorists doing thought experiments on the Casimir effect. This scenario 
features three parallel mirrors, and one determines the force on the central mirror, 
separated from the others by intermediate regions of widths L, and L, respectively. 

t The argument is familiar from time-dependent perturbation theory, where one commonly sets 
[S(frequencyl]’ = S(frequency) x (dura t ian) /2~ .  I f  d = I/ai over an arbitrarily large conventionallyshaped 
region of area a i  (e.g. an ellipse with excentricity fixed independently of 01, then (4.15) can be evaluated 
in closed farm. Enough obstinacy with Bessel functions eventually yields (4.17) with c a n r t a n t = 3 5 / I 2 ~ ’ ~  
0.0941. 
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When L2/ L, >> 1 ,  the mean force effectively depends on L, alone, and can he calculated 
as if the intermediate region having the larger width L, were a half-space, i.e. in the 
limit L2". But as regards our fluctuations, which depend crucially on T, the mathe- 
matical limit L2+ 00 is physically appropriate only if L, >> cT, which would rarely be 
true. Accordingly, we shall concentrate mainly on the opposite regime, where both L, 
and L, are much smaller than c E  Luckily, here too it turns out that, if cT>> L, >> L , ,  
the fluctuations of the time-averaged force on a two-sided piston set into the centre 
mirror are dominated by the fields in the narrower intermediate region, and depend 
only on L , .  

With these preliminaries understood, we revert until further notice to the forces on 
just one side of our test piston, situated at z = 0, and facing inwards into the region 
O <  z s  L between just one pair of mirrors. 

The expansions (3.2) and (3.3) are now modified by replacing the con- 
tinuous wavenumber / by nr/ L, n = 0,1,2,. . . ; and integrals (l/-&) dl .  . . by 
(l/a) Z:fo. . . , where the double prime prescribes a tacit factor 2-'" when n = 0. 
Correspondingly, in the commutators ( 3 . 2 ~ )  one now replaces 6 ( l - / ' )  by Ei,,,.; and in 
sums over squared normal-mode amplitudes (the only kind to feature below) 
( l / ~ ) j : d / .  . . is replaced by ( l / L ) E ~ ~ o ,  where the single prime assigns to the term 
with n = O  a factor i, not written explicitly but important to (5.3) and (5.4). These 
c y L 1 c J ~ u ~ ~ u ~ ~ ~ ~ ~ ~  U C L W G G ~ ~ ~  J ~ U  L~UU u u - a p a ~ c  arc umtiusseu an" Iriusirdicu extensively 
elsewhere (Barton and Fawcett 1988, section 10). 

----.%"-,."A-..--" L^r...^^_ -1-L .̂.-I L ^ I C "  _^^^  --- A : . . ~ ~ - - . J  --1 : - ~ - - - A ~ - - A -  3 

For the vacuum expectation value of the stress, (4.2a) thus adapted yields 

In the no-cut-off limit (I + 0 this becomes 

n4 72 
( S )  = -y+- 

7r 240L4 (5.2) 

The first term reproduces as it must the single-mirror result (4.26). and the second 
term is the mean Casimir stress. 

The mean-square deviation of the finite-time-averaged stress is obtained by similarly 
(4.3). .Are coniiniie W,fh Lorenizian ('$8), i h e  cut-o#, and 

introduce a convenient scaled variable U 5 wL/ T, 

A few straightforward steps lead to 

In the mathematical limit L + m, i.e. T /  L + 0, the sums over n and n' reduce to integrals, 
and one eventually recovers the single-mirror result (4.10b). But for the reasons 
explained at the start of this section we confine attention from here on to the opposite 
regime T I L  >> 1 .  Then (5.3) is dominated by the terms with n * 0 = n' ,  up to corrections 
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of relative order exp(-T/L). Keeping only n = 0 =  n', and remembering the factors 
prescribed by the prime on each sum, we find 

3 
(Lorentzian, cT >> L )  (5.4a) - - 

-9 2 r 2 - 6  
L T L l  

while in the general case we can assert only 

constant 
( c T x  L ) .  

L2 T" (As2) = (5.46) 

These results should be compared with (4.101, and, with equal legitimacy under 
the condition a / T < <  1, with (4.14). We see that fluctuations between parallel mirrors 
are enhanced relative to those in a half-space by the large factor (T/L)'. This may be 
thought surprising, because folklore has it that geometric restrictions produce frequency 
gaps (as indeed they do  here in branches with non-zero n ) ,  and that such gaps tend 
to suppress excitations. The present writer knows of no resolution of this paradox (if 
paradox it is) in words of one syllable. 

More interesting perhaps than the absolute magnitudes are the root-mean-square 
fluctuations relative to the mean Casimir stress, namely the ratio 

(AS2)"2 (1/  L2 T6)"* 
(vz/240L")= (l /L4) 

Suppose that T = lO-'s, which though optimistic for a force detector is perhaps not 
totally absurd, and that L=O.1 mm. Then (L/cT)'=4X outrageously far below 
the accuracy of any practicable apparatus. 

The situation for the three-mirror scenario can now be summarized quite succinctly 
in the regime where T )> a and T >> L, >> L , ,  We are concerned with the random variable 
S, redefined here as the ioiai Force per unii area on a test pision sei in ihe cenire 
mirror, averaged over times of order T. The mean value is (s) = ( S )  = rr2/240L4, directed 
towards the nearer of the two flanking mirrors. This result needs no time averaging, 
and does not depend on how any such averaging is implemented; but it does represent 
the finite difference between two oppositely directed forces (one exerted on each side 
of the piston), which taken separately diverge for perfect mirrors, and for imperfect 
mirrors are of order C14= o', as shown by (5.2). The mean-square deviation is (As')= 
constant/L:T'. The value of the constant does depend on just how the time averaging 
is implemented; it is convergent even without a cut-off, and is very insensitive to mirror 
imperfections provided To, >> 1; and it stems from zero-point fluctuations of the field 
intensities in the narrower of the two intermediate regions. 

Accordingly, the measurable fluctuations of the Casimir stress even for the more 
realistic two-mirror scenario can be calculated quite safely by considering the interior 
region alone. This conclusion is not wholly trivial, because if one did need to estimate 
the (far weaker) fluctuations of the stress exerted on the outer piston surface, then the 
half-space formula (4.14) would probably probe quite unreliable: the point is that 
laboratory apparatus is likely to have other conductors separated from the mirrors by 
distances less than cT. 

- 
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Appendix. On zero-point probability distributions 

By contrast with the body of this paper, where we calculated only mean-square 
deviations, we now consider some rudiments of the underlying probability distributions, 
which, once determined, would naturally carry much more information. For simplicity 
(and without any loss of essentials) we consider only unbounded space, and start with 
the appropriate normal-mode expansions of E and E, obtainable as explained riprapos 
of (3.1) above. Dimensional reasons alone suffice to make the cut-off prominent, in 
the first of its two roles explained at the end of section 3. 

The vacuum expectation values of the fields vanish, but those of any one squared 
Cartesian field component, say of Ej(r, 1). read 

Strictly speaking, the mere fact that this diverges in the no-cut-off limit does not 
automatically taboo the underlying probability distribution P,(u),  defined so that 
PE,(u) du is the probability of obtaining a result within du of U when one measures 
E, in vacuo. For instance, a Lorentzian P could be perfectly well defined and yet imply 
a divergent (E:)=I?-du P E , ( u ) u 2 .  

Luckily, in this simplest of cases PE, is readily determined via its characteristic 
function (Fourier transform) FE,(u), defined by 

m 

FE,(u)-(exp(iuE,))= duP,,(u)exp(iuu) 

To calculate F, we first define the positive- and negative-frequency parts E;*' or E, by 

E;+'=x a,E,, E:-'=xa:E;", (A31 * A 

and recall the normal-ordering Baker-Hausdorff formula 

exp(iuE,) = exp(iuE:-') exp(iuE;+') exp{ -f[iuE:-', iuE:+']) (A4) 

applicable because E:"' commute with their commutator 

[E:- ' ,  E;+']= -IIEA,1'= -(E;). (A5) 
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Since the vacuum expectation-value of the operator on the right of (A4) is unity, we have 

F , , ( u )  =exp( - t u 2 ( € ; ) )  =exp -__ i 
Now, simply because the distribution is Gaussian (as a direct consequence of the 

Baker-Hausdorff formula), it is fully specified by its mean-square deviation ( E ; )  alone; 
therefore it does become wholly unacceptable as Cl and (E:)  diverge. We must conclude 
that, in any ordinary statistical acceptation, E, itself is not a physical observable at all. 

On the other hand, if we average 6. over time, say with the same Lorentzian as in 
(4.8), then we do get a perfectly acceptable Gaussian for Ej,  with width proportional 
to T-2.  

The distributions of the E, trivially determine those of the E:, which in turn, though 
less obviously, determine the distribution of E 2 .  One necessary condition for this latter 
connection to be straightforward is that the variables E,, E,, E, commute. In fact it 
turns out that their joint distribution is just the product of their separate distributions, 
so that they are uncorrelated in the usual statistical sensei. 

It is far more of a challenge to determine the distributions of the energy density 
%= ( E 2 + B 2 ) / 8 r ,  or of the stress S,, as given by (l.l), because the E, fail to commute 
with the Bi .  Such calculations too are probably best tackled via the characteristic 
functions, with the techniques developed for what today would be called multimode 
squeezed states, clearly set out say by Agrawal and Mehta (1977). These techniques 
furnish formulae for the vacuum expectation values of exponentials whose exponents 
are of at most second order in the annihilation and creation operators a, and a:,. For 
the Maxwell field, Par remains to be found, though the present writer (unpublished) 
has evaluated its analogue for a one-dimensional scalar field: the calculation is manage- 
able because the matrix of the quadratic in the exponent is a sum of (just a few) 
separable matrices. 

Unfortunately, the most immediate desideratum suggested by sections 4 and 5 is 
the probability distribution not of S but of its time average, s, which presumably 
remains well defined even in the no-cut-off limit. However, even for the one-dimensional 
scalar model there seems to be no known way of evaluating the standard formula for 
the characteristic function of $ because the quadratic form in the exponent of exp(iu2) 
is not a sum of a finite number (let alone of just a few) separable parts. Thus the 
question of the probability distribution of remains open. 
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